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Abstract A classic question concerns whether humans can
attend multiple locations or objects at once. Although it is
generally agreed that the answer to this question is “yes,” the
limits on this ability are subject to extensive debate.
According to one view, attentional resources can be flexibly
allocated to a variable number of locations, with an inverse
relationship between the number of selected locations and the
quality of information processing at each location.
Alternatively, these resources might be quantized in a “dis-
crete” fashion that enables concurrent access to a small num-
ber of locations. Here, we report a series of experiments
comparing these alternatives. In each experiment, we cued
participants to attend a variable number of spatial locations
and asked them to report the orientation of a single, briefly
presented target. In all experiments, participants’ orientation
report errors were well-described by a model that assumes a
fixed upper limit in the number of locations that can be
attended. Conversely, report errors were poorly described by
a flexible-resource model that assumes no fixed limit on the
number of locations that can be attended. Critically, we
showed that these discrete limits were predicted by cue-
evoked neural activity elicited before the onset of the target
array, suggesting that performance was limited by selection
processes that began prior to subsequent encoding and

memory storage. Together, these findings constitute novel
evidence supporting the hypothesis that human observers
can attend only a small number of discrete locations at an
instant.

Keywords Attention .Workingmemory . ERP

As a doctoral student in the laboratory that was codirected by
Edward E. Smith and John Jonides, the senior author of this
article was introduced to the field of cognitive neuroscience
when it was still an emerging trend rather than the dominant
approach for understanding cognition. Ed Smith was the
perfect advisor during this exciting time. He had always been
celebrated for his ability to see the broad conceptual connec-
tions between different domains of psychology, and that same
vision fostered his transition from an eminent career in tradi-
tional cognitive psychology to a prominent place in the field
of cognitive neuroscience. As a thesis committee member, Ed
Smith had a substantial influence on E.A.’s doctoral work
examining the links between working memory and attention.
Indeed, a core theme of that work is still evident in this article:
We report that—as with visual working memory—capacity
limits in visual selective attention are best described by dis-
crete rather than flexible resource allocation. Moreover, we
show that capacity limits for internal storage in working
memory are strongly correlated with the number of positions
to which covert attention could be allocated.We are grateful to
have benefited from Ed Smith’s lasting and powerful contri-
butions to psychology and neuroscience, and we hope that this
work can serve as a small token of our gratitude for his
guidance, energy, and vision.

The human visual system has a limited processing ca-
pacity. Consequently, mechanisms of selective attention are
needed to prioritize stimuli that are relevant to the current
behavioral goals. Converging evidence from behavioral
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(e.g., Alvarez & Cavanagh, 2005; Alvarez, Gill, & Cavanagh,
2012; Awh & Pashler, 2000; Franconeri, Alvarez, & Enns,
2007; Kramer & Hahn, 1995), electrophysiological
(e.g., Anderson, Vogel, & Awh, 2011, 2013; Drew & Vogel,
2008; Ester, Drew, Klee, Vogel, & Awh, 2012; Malinowski,
Fuchs, &Müller, 2007;Müller, Malinowski, Grube, &Hillyard,
2003), and neuroimaging (e.g., McMains & Somers, 2004,
2005) studies have suggested that human observers can select
at least two noncontiguous locations at once. Although it is
generally agreed that there is some limit in the number of
locations or stimuli that can be concurrently attended, the nature
of this limit is unclear. The goal of the present work was to
compare two broad theoretical perspectives on this issue.

Before introducing these perspectives, we should first ex-
plain exactly what we mean by “selection.” A typical visual
scene contains a multitude of sensory signals, only a handful
of which may be relevant to the current behavioral goals. To
facilitate processing, the visual system must isolate behavior-
ally relevant signals from irrelevant signals (and also isolate
these relevant signals from one another). Thus, the process of
“selecting” a stimulus (or location) requires generating an
individuated representation of that stimulus that is perceptu-
ally and/or neurally segregated from other representations
(e.g., Kahneman, Treisman, & Gibbs, 1992; Xu & Chun,
2009). Here, our goal was to examine capacity limits in
selection as it pertains to this individuation process.

One possibility is that capacity limits in visual selective
attention are determined by a “flexible resource.” This frame-
work proposes that attentional resources can be allocated to as
many or as few locations (or items) as an observer wishes, with
the caveat that as more locations are selected, these resources
are spread more thinly and the efficiency of visual processing
at each selected location is reduced. A previous study
(Franconeri et al., 2007) was consistent with this prediction.
In one experiment, participants were cued to monitor two,
three, four, five, or six locations. After a brief retention interval,
a search array was presented, and participants were instructed
to search exclusively through cued locations in order to deter-
mine whether a target was present (foils were presented at
noncued locations). When dense (24 total items) search arrays
were presented, the results suggested that participants could
select two or three locations at most. Conversely, when sparse
(12 total items) arrays were presented, participants could select
upward of five or six locations. This result was interpreted as
follows: When dense search arrays were presented, partici-
pants needed to adopt fine-grained selection regions in
order to avoid accidentally selecting information from
neighboring locations, and fewer locations could be select-
ed. However, when sparse search arrays were presented,
coarse selection regions could be utilized, and participants
were thus able to select a larger number of locations. This
inverse relationship between capacity and granularity is
considered a hallmark of flexible resource allocation.

The flexible resource view also predicts that stimuli of
greater complexity (relatively speaking) will consume a great-
er proportion of attentional resources. Consequently, ob-
servers may be able to select many “simple” objects, but only
a few “complex” objects. Indeed, it is well-known that detect-
ing a singleton target among uniform distractors (e.g., a green
disk among red disks) is trivial, but detecting a conjunction
target (i.e., a target defined by two or more features) in a
heterogeneous display is much more difficult (e.g., Treisman
& Gelade, 1980). More recently, Scharff, Palmer, and Moore
(2011a, 2011b) asked observers to report either the location of
a higher-contrast disk (presented amongst three lower-contrast
distractors) or the location of a word that matched a
prespecified semantic category (presented among three non-
target words). On some trials, the stimuli were presented
sequentially (e.g., two items in each of two successive dis-
plays), whereas on other trials, all four stimuli were presented
simultaneously. Assuming that words are more “complex”
than disks, the flexible-resource view predicts that observers
should be able to select fewer items in the word discrimination
task than in the contrast discrimination task. Consequently,
performance on the word discrimination task should benefit
from sequential (relative to simultaneous) displays, whereas
performance on the contrast discrimination task should be
roughly equal across these displays. This is precisely what
Scharff and colleagues observed: Performance in the contrast
discrimination task was virtually identical for simultaneous
and sequential displays, but performance in the word discrim-
ination task was substantially lower during simultaneous (rel-
ative to sequential) displays.

Another possibility is that capacity limits in visual selective
attention are determined by a “discrete resource.” Here, atten-
tional resources are quantized in a “slot-like” fashion that
precludes selection beyond a small (and fixed) number of
locations or items (typically estimated at around three or four).
Once this limit has been surpassed, observers can obtain no
information about additional items. Evidence consistent with
this possibility has been reported in the subitizing literature.
For example, Trick and Pylyshyn (1993, 1994) asked subjects
to rapidly enumerate the number of items present in a display
and found that responses were fast and accurate for arrays
containing up to four targets. However, response latencies and
error rates increased monotonically with target numerosity
once this range was exceeded. This profile was well-
approximated by a bilinear function, and static performance
at set sizes 1–4 was interpreted as evidence for a limited-
capacity selection mechanism that enables concurrent access
to a small number of stimuli.

How could a discrete resource account for the findings
favoring unlimited-capacity (or variable-capacity) selection
in simple search? We suspect that in many cases, the apparent
selection of large numbers of items may actually reflect the
selection of a relatively small number of groups of items.
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Consider a case in which an observer is asked to report the
presence or absence of a green disk among a variable number
of red disks. Prior work (e.g., Treisman & Gelade, 1980)
suggested that performance (e.g., response latency) on this
task is equivalent for displays containing 10 or 100 red disks
(e.g., Treisman & Gelade, 1980). However, this does not
necessarily mean that the observer can select (i.e., individuate)
100 items. Instead, one alternative explanation is that these
displays are perceived as a much smaller number of perceptual
groups . For instance, observers might perceive the green
target as a single item, and the array of red distractors (grouped
by the shared color red) as a second item; indeed, this is
precisely the explanation that Duncan and Humphreys
(1989) offered to explain the phenomenon of “pop out”
(Duncan & Humphreys, 1989; Rensink & Enns, 1995).
Moreover, it is well-known that humans are able to rapidly
segregate and discriminate textures that share similar first- and
second-order statistics (e.g., Bergen & Julesz, 1983; Sagi &
Julesz, 1985). Thus, it should be easy to detect a set of
rightward-tilted bars amongst a larger array of leftward-tilted
bars, but considerably more difficult to detect a single target
word amongst nontarget words. Note that in both of these
examples, observers need not individuate all (or even most) of
the unique elements in a given display. Instead, rapid discrim-
ination can be guided by knowledge of local image statistics
and/or other Gestalt grouping cues.

This general line of reasoning may suffice to explain the
findings reported by Scharff et al. (2011a, 2011b). For exam-
ple, during the contrast discrimination task, observers may
have treated the three identical distractors as a background
texture, thereby allowing rapid and efficient identification of
the target. However, the same strategy could not be used to
solve the word discrimination task; different words contain a
multitude of different features with different local statistics,
and are thus not easily grouped. Following this general logic,
the discrete-resource model can provide a plausible alter-
native explanation for many demonstrations that appear to
favor an unlimited- or variable-capacity selection mecha-
nism (though see Huang & Pashler, 2005, for one possible
exception to this trend).

The goal of the present study was to compare flexible- and
discrete-resource models of attentional selection in the same
task. In Experiment 1, we asked participants to monitor a
variable number of cued locations and to report the orientation
of a single, briefly presented and masked, target (see Fig. 1).
We then fit participants’ orientation report errors (i.e., the
difference between the reported and actual target orientations)
with quantitative functions that encapsulated key predictions
of the flexible- and discrete-resource views. The key question
here was whether or not participants could provide nonzero
information about large numbers of items (as predicted by the
flexible-resource view) or whether the proportion of “guess-
ing” responses would be large, indicating that participants

were incapable of selecting all elements within a display
(as predicted by the discrete-resource view).

Experiment 1

Method

Participants A group of 17 undergraduate students participat-
ed in Experiment 1 in exchange for course credit. All of the
participants gave both written and oral informed consent, and
all reported normal or corrected-to-normal visual acuity and
color vision. The data from one participant could not be
modeled (visual inspection of this participant’s report error
histograms revealed a flat function over orientation space,
suggesting that he or she simply guessed on every trial); the
data reported here reflect the remaining 16 participants.

Stimuli and apparatus The stimuli were generated in
MATLAB (Mathworks, Natick, MA) using the
Psychophysics Toolbox software (Brainard, 1997; Pelli,
1997) and rendered on a medium-gray background via a
CRT monitor cycling at 120 Hz. Participants were seated
approximately 60 cm from the monitor (head position was
unconstrained) and instructed to maintain fixation on a small
dot (subtending 0.2º) in the center of the display for the
duration of both tasks. Each participant completed five blocks
of 60 trials.

Procedure The selection task is shown in Fig. 1. Each trial
began with a cue array consisting of eight circles (2º radius)
spaced equally along the perimeter of an imaginary circle
(5º radius) centered at fixation. On each trial, four or all eight
of these circles were rendered in red. On set size 4 trials, the
remaining circles were rendered in black. During set size 4
trials, we cued either the upper or lower two positions (as in
Fig. 1) or the leftmost and rightmost two positions (i.e., the
locations of the black circles in Fig. 1) in the display.1 After
2 s, the target array was presented. As is shown in Fig. 1, the
target array contained a single radial target (whose position
was unknown to the participant in advance) and seven dia-
metrical distractors. All stimuli were embedded within four-
dot contours (see Fig. 1). After 100 ms, all display elements
were removed except for the four-dot contour at the target’s

1 Note that our cued locations were always arranged contiguously. One
might wonder whether our results would generalize to a situation inwhich
cued locations were randomly arranged or interleaved between uncued
locations. The present results cannot speak directly to this question.
However, in pilot experiments not reported here, we obtained similar
findings (i.e., the discrete-resource model always outperformed the
flexible-resource model) when we cued random locations in the left and
right hemifields on each trial (with the constraint that each hemifield
contained two cued positions).
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location. Under these circumstances, the contour would typi-
cally act as a “substitutionmask” that prohibits observers from
accessing information at the masked location (e.g., Enns &
DiLollo, 1997). We included masks to discourage participants
from consulting a sensory (i.e., iconic) representation of the
target array that might persist for a few hundred milliseconds
after its offset. Substitution masks are a natural choice be-
cause—unlike metacontrast, backward, or lateral masks—
they are rendered ineffective when spatial attention is directed
to the masked location prior to target offset (Enns & Di Lollo,
1997). Thus, our assumption was that if participants selected a
subset of the (cued) locations prior to the onset of the target
array, then information appearing at these locations would
escape masking. Conversely, information at unselected loca-
tions should be highly susceptible to masking, and this should
prevent participants from querying a lingering sensory repre-
sentation of items that they failed to select. Note that only the
target location was masked; thus, the mask also functioned as
a 100 %-valid postcue regarding the target’s location. The
mask display was presented for 750 ms and was followed by
the presentation of a randomly oriented probe at the target’s
location. Participants were allowed to adjust the orientation of
the target (via the left and right arrow keys on a standard
keyboard) until it matched their percept of the target, entering
their final response by pressing the space bar. Participants
were instructed to respond as precisely as possible, and no
response deadline was imposed.

It is now well-known that visual selective attention and
visual working memory (WM) share common neural sub-
strates (see, e.g., Awh & Jonides, 2001, for a review). Thus,
one might also ask whether putative flexible or discrete limits
in visual selective attention also manifest during the tempo-
rary retention of visual information. To examine this possibil-
ity, each participant also completed a WM task whose design
was similar to that of the selection task. Here, the cue array
remained on the screen for 1,000 ms, and was followed by a 1,
000-ms sample array. Radial line segments were presented
inside of each cued location (no stimuli were presented in
noncued circles), and participants were instructed to remem-
ber the orientations of these stimuli over a subsequent

1,000-ms blank interval. No masks were presented. At the
end of each trial, a probe stimulus appeared at one of the cued
locations. Participants adjusted the orientation of this probe
using the keyboard until it matched the orientation of the
target that had appeared in that position. Again, participants
were instructed to respond as precisely as possible, and no
response deadline was imposed.

Data analysis For each task, we computed a distribution of
orientation report errors (i.e., the angular difference between
the reported and actual target orientations) for each participant
and each set size. We then attempted to describe these distri-
butions using quantitative functions that would encapsulate
the key predictions of flexible- and discrete-resource models.
First, consider first a hypothetical case in which a participant
is presented with a single radial target. Under these conditions,
the probability of observing report error x (where –π ≤x ≤π ) is
given by a von Mises distribution (the circular analogue of a
standard normal distribution) with mean μ (uniquely deter-
mined by the perceived target orientation θ ) and concentration
k (uniquely determined by σ and corresponding to the preci-
sion of the observer’s representation; see Eq. 1):

p x θ;σjð Þ ¼ ek cos x−μð Þ

2πI0 kð Þ ; ð1Þ

where I0 is the modified Bessel function of the first kind of
order 0. In the absence of any systematic perceptual biases
(i.e., if θ is a reliable estimator of the target’s orientation), then
estimates of μ should take values near 0º, and observers’
performance should be limited primarily by noise (σ ).

In contrast, discrete-resource models predict a fixed upper
limit on the number of locations that can be selected. Once this
limit is exceeded, participants should be unable to obtain any
information about additional items in a display. Consider the
case of a participant who can select a maximum of three
locations. During set size 4 trials, we assume that this partic-
ipant will select a random subset of three cued locations. Thus,
on 75 % of trials the target will appear at a selected location,

Fig. 1 Selection task. Each trial began with a cue array containing four or
eight red circles (shown here in white) arranged around the circumference
of an imaginary circle at fixation. The target array then appeared for
100 ms; participants were instructed to discriminate the orientation of a
single radial target (top left of target panel) that appeared in one of the
cued locations. The target array was followed by a 750-ms substitution

mask and the appearance of a randomly oriented probe at the target’s
location. Participants manipulated the orientation of the probe using the
arrow keys on a standard keyboard until it matched their percept of the
target’s orientation. Note that the stimuli are not drawn to scale; see the
Method section for information about the stimulus size, eccentricity, and
so forth
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and the participant will obtain some nonzero amount of
information regarding its orientation. Here, we would once
again expect the participant’s responses to be normally
distributed around μ (i.e., 0º response error), with relatively
few high-magnitude errors. However, on the remaining
25 % of trials, the target will appear at an unselected
location. If no information can be gleaned from unselected
locations, then the participant will have to guess. Across
many trials, these guesses will manifest as a uniform distri-
bution from –π to π . Because participants will sometimes
select and sometimes fail to select the target’s location, the
empirically observed distribution of response errors can be
expressed as the weighted sum of a uniform and a von
Mises distribution (Zhang & Luck, 2008, Eq. 2):

p x θ;σ; nrjð Þ∘ ¼ 1−nrð Þ e
k cos x−μð Þ

2πI0 kð Þ ∘þ nr

2π
; ð2Þ

where μ and k are the mean and concentration of a von Mises
distribution (as in Eq. 1), and nr is the height of a uniform
distribution with range –π to π .

Maximum likelihood estimation (MLE) was used to fit
Eqs. 1 and 2 to each observer’s distribution of response errors
(separately for each set size and task—i.e., selection vs. WM).
Initially we allowed all parameters in each model (μ and σ for
the flexible-resource model; μ , σ , and nr for the discrete-
resource model) to vary across participants and set sizes. In all
of the experiments reported here, estimates of μ never devi-
ated from 0. Thus, we fixed this parameter at 0 and excluded it
from further analyses. Fitting was performed iteratively over a
wide range of starting values in an effort to avoid local
minima. Finally, we imposed lower boundaries on the range
of possible parameter values (a minimum σ and nr of 0.01
and 0, respectively) in order to prohibit nonsensical estimates
(e.g., negative values of σ ).

To compare the models, we used Bayesian model compar-
ison (BMC; MacKay, 2003; Wasserman, 2000). This method
returns the likelihood of a model given the data, while
correcting for model complexity (i.e., the number of free
parameters). Unlike traditional model comparison methods
(e.g., adjusted r2 and likelihood ratio tests), BMC does not
rely on single-point estimates of the model parameters.
Instead, it integrates information over parameter space, and
thus accounts for variations in a model’s performance over a
wide range of possible parameter values. We also report
traditional goodness-of-fit measures (e.g., adjusted r2 values,
where the amount of variance explained by a model is weight-
ed to account for the number of free parameters it contains) for
the flexible and discrete models (after sorting response errors
into 25 bins, each 14.4º wide). As is shown below, the adjust-
ed r2 values were larger for the discrete than for the flexible
model in all experiments. However, we emphasize that these

values can be influenced by arbitrary choices about how to
summarize the data, such as the number of bins to use when
constructing a histogram of response errors (e.g., one can
arbitrarily increase or decrease estimates of r2 to a moderate
extent bymanipulating the number of bins). Thus, they should
not be viewed as conclusive evidence suggesting that one
model systematically outperforms another.

Results and discussion

Selection task Panels A and B of Fig. 2 depict the mean (± 1
SEM ) distribution of report errors across participants for set
size 4 (2A) and set size 8 (2B) trials of the selection task. Note
that both distributions feature a prominent uniform compo-
nent. At the individual-participant level, a mixture distribution
(Eq. 2) capturing key predictions of a discrete-resource model
provided a reasonable description of report errors for set sizes
4 (mean adjusted r2=.89±.01) and 8 (mean adjusted r2=.57
±.05).2 Conversely, a circular Gaussian distribution capturing
the predictions of a flexible-resource model (Eq. 1) provided a
poor description of the data (mean adjusted r2=.39±.02 and
.23±.02 for set sizes 4 and 8, respectively). Bayesian model
comparison revealed that the log likelihood of the mixture
distribution was 35.61±2.41 and 11.25±1.57 units larger than
the likelihood of the Gaussian distribution for the set size 4
and set size 8 trials, respectively. For exposition, a log likeli-
hood difference of 11.25 units means that the data are e11.25,
or ~76,880 times, more likely to result from the mixture
distribution relative to the Gaussian distribution.

The estimates of σ and nr returned by this model are listed
in Table 1 (top row). Note that estimates of σ appear to
increase as a function of set size (i.e., the precision of partic-
ipants’ report error appears to decrease with set size). This
result is nominally consistent with the inverse relationship
between number and granularity predicted by flexible-
resource models. However, we would caution against this
interpretation for three reasons. First, the increase in σ with
set size was only marginally significant (p =.07). Second, note
that both the discrete- and flexible-resource models performed
relatively poorly at set size 8 (adjusted r2s=.57 and .23,
respectively). Thus, the parameter estimates returned by these
models should be treated as suspect. Finally—and most im-
portantly—flexible-resource models predict no upper limit on
the number of locations that can be selected. However, our
data clearly indicate that a distribution containing a uniform
component corresponding to an upper limit in the number of
locations that can be selected provides a superior account of
the observed data in all conditions.

2 The smooth curves overlaid in Fig. 2 were fit to the mean distributions
of report errors across participants. Fits at the individual-participant level
were substantially noisier.
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WM task Panels C and D of Fig. 2 depict the mean distribu-
tions of response errors observed across participants during set
size 4 (2C) and set size 8 (2D) trials of the WM task. As was
the case in the selection task, these distributions were well-
approximated by a mixture distribution (mean adjusted
r2s=.91±.02 and .57±.06 for set size 4 and 8 trials, respec-
tively) and poorly described by a Gaussian distribution (mean
adjusted r2s=.62±.05 and .29±.05 for set size 4 and 8 trials,
respectively), corroborating earlier findings (Zhang & Luck,
2008, 2009, 2011). Additionally, Bayesian model comparison
revealed that the log likelihood of the mixture distribution was
23.28±2.69 and 7.87±1.36 units larger than the likelihood of
the Gaussian distribution (for set size 4 and set size 8 trials,
respectively). The estimates of σ and nr returned by this
model are listed in Table 1 (bottom row). As in the selection
task, estimates of σ increased as a function of set size.
However, this increase was driven exclusively by one partic-
ipant [a direct comparison of σ estimates revealed no reliable
effect of set size; t (15)=1.31, p =.20]. Critically, the discrete-
resource model still provided a substantially better account of
the empirically observed distributions of response errors, con-
sistent with prior work (e.g., Zhang & Luck, 2008).

Relationships between selection and WM capacity The afore-
mentioned results are broadly consistent with a discrete-
resource view of attentional selection and WM storage.
Specifically, participants’ distributions of orientation report
errors were well-approximated by a mixture distribution de-
signed to capture guesses, and poorly described by a function
that assumed no guessing. Next, we wondered whether these
apparent discrete limits in attentional selection and WM stor-
age were determined by a common resource. To investigate
this, we correlated capacity estimates3 obtained in the selec-
tion and WM tasks. Because the discrete-resource model was
a poor predictor of response errors on set size 8 trials in both
tasks, only set size 4 trials were used to compute this correla-
tion. However, we found a marginally significant positive
correlation between these two variables (r =.42, p =.10) when
set size 8 trials were considered, and we observed a robust
positive correlation between selection andWM capacity when
we averaged capacity estimates over set size 4 and 8 trials:
r =.75, p <.01. As is shown in Fig. 3, we observed a strong
correlation between the capacity estimates in the two tasks
(Fig. 3; r =.77, p <.01). This result is nominally consistent
with the view that capacity limits in selective attention and
WM storage are determined by a common resource.

Control experiments Before considering these findings in
more detail, some alternative explanations merit consider-
ation. For example, one possibility is that the discrete item
limits that we observed in our selection task are an artifact of
masking. To investigate this possibility, 18 new observers
completed a version of Experiment 1 that omitted the masks
(all other aspects of the design and analysis were identical to
those described above). The results of this experiment are
shown in Fig. 4. Specifically, panels A and B depict the mean
(± 1 SEM ) distributions of report errors across participants
during set size 4 and 8 trials of the selection task
(respectively). As in Experiment 1 (see Figs. 2A and B), both
distributions feature prominent uniform components. At the
individual-participant level, a mixture function (Eq. 2)
accounted for .90 (± .01) and .91 (± .03) of the variance in
participants’ report errors during set size 4 and 8 trials, respec-
tively. Conversely, a Gaussian distribution (Eq. 1) accounted
for just .68 (± .04) and .53 (± .04) of the variance in report
errors. Bayesian model comparison yielded similar findings:
The likelihoods of the mixture distribution were 46.02±4.73
and 49.54±6.32 units larger than the likelihood of the
Gaussian distribution (for set size 4 and 8 trials, respectively).
The parameter estimates returned by the discrete-resource
model are shown in Table 2 (top row). The estimates of nr

3 The nr variable corresponds to the proportion of trials on which the
participant failed to select the cued location and was forced to guess.
Thus, we defined “capacity” as N(1 – nrN), where N is the number of
cued locations.

Fig. 2 Results of Experiment 1. Panels A and B depict the mean (± 1
SEM) distributions of response errors across participants for set size 4 (A)
and set size 8 (B) trials of the selection task, while panels C and D depict
the mean (± 1 SEM) distributions of response errors across participants
for set size 4 (A) and set size 8 (B) trials of the WM task. In all panels, the
best-fitting flexible- (dashed lines) and discrete- (solid lines) resource
models are overlaid

Table 1 Mean (± SEM) parameter estimates returned by the discrete-
resource model for the selection and WM tasks in Experiment 1

Set Size 4 Set Size 8

σ nr σ nr

Selection task 14.50 (0.63) 0.51 (0.22) 17.17 (1.29) 0.77 (0.02)

WM task 18.22 (0.53) 0.32 (0.05) 24.34 (4.48) 0.75 (0.03)

Values of σ are in degrees
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were substantially lower than those obtained in Experiment 1
(cf. Tables 1 and 2), suggesting that participants were more
likely to successfully encode and store the target when
masks were eliminated. However, the estimates of σ were
comparable to those obtained in Experiment 1 and did not
vary with set size.

Similar results were obtained in the WM task (which was
identical in every respect to the memory task used in Exp. 1).
Panels C and D of Fig. 4 depict the mean distributions of
report errors observed across participants during set size 4 (C)
and set size 8 (D) trials. These distributions were reasonably
well-approximated by a mixture distribution (mean adjusted
r2s=.84±.05 and .45±.07 for set size 4 and 8 trials, respec-
tively), and poorly approximated by a Gaussian distribution
(mean adjusted r2s=.60±.04 and .28±.04 for set size 4 and 8
trials). Furthermore, Bayesian model comparison revealed
that the log likelihoods of the mixture distribution were
21.33±2.96 and 5.97±1.54 units larger than the likelihood

of the Gaussian distribution (for set size 4 and set size 8 trials,
respectively). The parameter estimates returned by the
discrete-resource model are given in Table 2 (bottom row).
Note that these values are strikingly similar to those obtained
in Experiment 1. Finally, we also replicated the correlation
between estimates of selection and WM capacity observed in
Experiment 1 (r =.48, p =.04; set size 4 trials only). Thus, the
results of this experiment were broadly consistent with those
of Experiment 1, which suggests that the discrete limits that
we observed cannot be attributed solely to masking.

Next, we considered whether the discrete item limits that
we observed in our selection task reflect a difficulty in main-
taining focus on individual items in the cue array (rather than
the ability to select these items per se). For example, perhaps
participants selected all of the relevant locations after the onset
of the cue array (as is predicted by a flexible-resource model)
but were incapable of “holding” attention over all of these
locations for the entire cue-to-target interval (2,000 ms). To
examine this possibility, 13 new participants completed a
version of Experiment 1 in which the cue-to-target interval
was drastically shortened. The design of this experiment was
identical to that of Experiment 1, with the following excep-
tions. First, set size 8 trials were eliminated. Second, the
temporal interval separating the cue and target arrays was
shortened to a maximum of 250 ms, and varied unpredictably
across trials (between 50, 100, 200, and 250 ms). Third, the
WM task was eliminated (this ensured that we could collect
sufficient data in each of the cue-to-target interval bins within
a single 1.5-h session). Mean (± SEM ) histograms of report
errors are shown for each cue-to-target interval in Fig. 5 (panel
A=50 ms, B=100 ms, C=200 ms, D=250 ms). As in
Experiment 1, these distributions were well-described by a
mixture function (mean adjusted r2s=.91, .94, .93, and .84 for
the 50-, 100-, 200-, and 250-ms cue-to-target stimulus onset
asynchronies, respectively) and poorly described by a
Gaussian function (mean adjusted r2s=.43, .54, .60, and .65
for the 50-, 100-, 200-, and 250-ms cue-to-target stimulus
onset asynchronies, respectively). Bayesian model compari-
son revealed that the likelihoods of the mixture distribution
were 40.22 (± 3.18), 45.61 (± 4.25), 44.07 (± 4.34), and 44.94
(± 7.20) units greater than the likelihood of the Gaussian
distribution (for the cue–target stimulus onset asynchronies

Fig. 3 Estimates of selection and WM capacity are strongly correlated
(r =.77)

Fig. 4 Results of Control Experiment 1. As in Fig. 2, panels A and B
depict the mean (± 1 SEM) distributions of response errors across partic-
ipants for set size 4 (A) and set size 8 (B) trials of the selection task, while
panels C and D depict the mean (± 1 SEM) distributions of response
errors across participants for set size 4 (C) and set size 8 (D) trials of the
WM task. In all panels, the best-fitting flexible- (dashed lines) and
discrete- (solid lines) resource models are overlaid

Table 2 Mean (± SEM) parameter estimates returned by the discrete-
resource model for the selection and WM tasks in Control Experiment 1,
in which masks were removed from the target display

Set Size 4 Set Size 8

σ nr σ nr

Selection task 14.69 (0.87) 0.19 (0.03) 15.09 (0.95) 0.31 (0.04)

WM task 18.51 (0.98) 0.39 (0.05) 38.19 (9.78) 0.66 (0.06)

Values of σ are in degrees
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[SOAs] of 50, 100, 200, and 250 ms, respectively). The
parameter estimates returned by the discrete-resource model
are shown in Table 3. Briefly, increasing the cue-to-target
SOA increased the likelihood that participants would encode
the target (i.e., estimates of nr fell as the SOA increased).
However, the same manipulation had no discernible effect on
estimates of σ . Moreover, the estimates of σ obtained for each
SOAwere comparable to those observed for set size 4 trials in
Experiment 1 (cf. Tables 1 and 3). Thus, the results of this
experiment are broadly consistent with those of Experiment 1,
which suggests that the item limits that we observed in the
selection task cannot be attributed to difficulties in holding
attention at cued locations for sustained periods.

Experiment 2

Given that our selection task required observers to briefly hold
a single orientation in memory (e.g., during the 750-ms mask
interval), one could argue that the apparent item limits we
observed reflect well-known item limits in WM storage. For
example, perhaps participants performed our selection task by
encoding and storing information from each cued location,
then executing a search through memory to find the appropri-
ate representation when the probe was presented. This strategy

seems farfetched for at least two reasons: First, relative to the
WM task (in which observers were required to encode and
remember four or eight unique orientations), the memory load
imposed by the selection taskwas relatively low—participants
were only required to remember the orientation of a single
stimulus. Second, the substitution mask that followed the
target array also served as a 100 %-valid postcue regarding
the target’s location, obviating any need for participants to
store information from irrelevant locations. Nevertheless, if
participants performed the “selection” task using a mnemonic
strategy, it could very well explain the strong correlation
between estimates of selection and WM capacity shown in
Fig. 3. Thus, we felt it prudent to conduct an additional
experiment to examine this possibility. In Experiment 2, we
compared observers’ performance on the “single-target” se-
lection task used in Experiment 1 (i.e., in which participants
were cued to attend a variable number of locations and re-
quired to discriminate the orientation of a single target) with
performance on a “multiple-target” task that required partici-
pants to encode and store information from a variable number
of cued locations. Our reasoning was that if participants
performed the single-target task by encoding and storing
information from each cued location, then requiring partici-
pants to use this strategy in a multiple-target task should have
a negligible effect on their performance.

Method

Participants A group of 18 undergraduate students were test-
ed in a single 1.5-h session in exchange for course credit. All
of the participants gave written and oral informed consent, and
all reported normal or corrected-to-normal visual acuity and
color vision.

Stimuli and procedure Each participant completed a set-size-
4-only version of the selection and WM tasks described in
Experiment 1. Additionally, participants completed a “multi-
ple” target variant of the selection task. Like the “single-
target” task, each trial began with a cue array that instructed
observers to attend four locations. Next, we presented radial
targets in each cued location. Participants knew that they
would be asked to report one of these items, but the location
of the probed item was unknown in advance. The target
display was followed by a 750-ms delay, during which each
cued location was surrounded by a four-dot substitution mask.
At the end of the trial, participants were probed to report a
single target item (as in Exp. 1).

Results and discussion

Figure 6 depicts the mean (± 1 SEM ) distributions of report
errors across participants for the single-target (A), multiple-

Fig. 5 Results of Control Experiment 2. Panels A–D depict the mean
(± 1 SEM) distributions of response errors for the 50-, 100-, 200-, and
250-ms cue-to-target stimulus onset asynchronies, respectively. In all
cases, a discrete-resource model (solid lines) outperformed a flexible-
resource model (dashed lines)

Table 3 Mean (± SEM) parameter estimates returned by the discrete-
resource model in Control Experiment 2

50 ms 100 ms 200 ms 250 ms

σ 14.93 (0.67) 14.42 (0.61) 14.19 (0.70) 14.48 (0.89)

nr 0.49 (0.05) 0.39 (0.05) 0.30 (0.06) 0.25 (0.05)

Values of σ are in degrees
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target (B), and WM (C) tasks. For all three tasks, the report
error distributions were well-approximated by a mixture dis-
tribution (mean adjusted r2s=.90, .77, and .92, for the single-
target, multiple-target, and WM tasks, respectively) and poor-
ly described by a Gaussian function (adjusted r2s=.48, .46,
and .68, respectively). Bayesian model comparison revealed
that the discrete-resource model outperformed the flexible-
resource model by 45.00 (± 4.39), 20.50 (± 3.32), and 31.39
(± 3.28) units for the single-target, multiple-target, and WM
tasks (respectively). The parameter estimates returned by this
model for each task are shown in Table 4. Critically, estimates

of selection capacity were substantially lower in the multiple-
target task (M =2.27) than in the single-target task (M =1.65),
t (17)=4.38, p <.001, whereas estimates of σ were larger in
the multiple-target (M =20.19º) than in the single-target (M =
16.18º) task, t (17)=4.08, p <.001. Thus, explicitly requiring
participants to encode and store information from each cued
location had a deleterious effect on their performance.

Experiment 3

To provide additional evidence that performance in our selec-
tion task was limited by visual selection per se rather than by
memory demands, we conducted another experiment in which
we measured an electrophysiological marker of selective at-
tention: the N2pc ERP component. Briefly, the N2pc is a
transient contralateral negative wave appearing over posterior
electrode sites approximately 200 ms after stimulus onset,
which has been localized to generators in extrastriate cortex,
including V4 and posterior regions of inferior temporal cortex
(Hopf et al., 2000). Moreover, recent evidence has suggested
that the N2pc amplitude scales with attentional demands
before reaching an asymptotic limit with behavioral esti-
mates of subitizing (e.g., Ester et al., 2012), visual search
(Anderson et al., 2013), multiple-object tracking (Drew &
Vogel, 2008), and WM (Anderson et al., 2011) capacity. In
one recent example, Anderson et al. (2013) examined set-size-
dependent changes in N2pc amplitudes while participants
performed a speeded search task (see Ester et al., 2012, for
similar findings in the context of a subitizing task). On each
trial, participants were simply asked to report the orientation
of a target “L” presented among a variable number of tilted
“T”s as quickly and as accurately as possible. On each trial,
the presentation of the search display evoked a large N2pc
response. Critically, the amplitudes of these evoked responses
increased monotonically with set size (i.e., the total number of
to-be-searched items) for displays containing one, two, or
three items, but reached an asymptotic limit for displays
containing four or more targets. This response profile was
well-approximated by a bilinear function, and individual dif-
ferences in the inflection point of these functions were strong-
ly correlated with search slopes. This result is naturally ac-
commodated by a discrete selection model in which partici-
pants sequentially select and search sets of N items (where N
is typically ≤4). Under this scheme, participants who can
select and search more items at any instant will, on average,
take less time to find the target. Moreover, the fact that each
participant’s N2pc-by-set-size response profile correlated with
search slopes suggests that this component reflects—at least in
part—the N items that observers are capable of selecting at an
instant.

In Experiment 3, we examined set-size-dependent changes
in N2pc amplitudes evoked by the presentation of a cue

Fig. 6 Results of Experiment 2. Panels A, B, and C depict the mean (± 1
SEM) distributions of report errors during the single-target, multiple-
target, and working memory tasks, respectively. The best-fitting flexible-
(dashed lines) and discrete- (solid lines) resource models are overlaid

Table 4 Mean (± SEM) parameter estimates returned by the discrete-
resource model for each task in Experiment 2

σ nr

Single target 16.18 (0.72) 0.43 (0.04)

Multiple target 20.19 (1.28) 0.58 (0.04)

WM 19.43 (0.92) 0.26 (0.04)

Values of σ are in degrees
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display (appearing 500–700ms prior to the onset of any to-be-
encoded or remembered information) using a design similar to
that of Experiment 1. A reliable relationship between cue-
evoked N2pc responses and participants’ behavioral perfor-
mance would further support the conclusion that participants’
performance is determined by the selection of cued locations
rather than the subsequent storage of target and distractor
information at these locations.

Method

Participants A group of 26 adults (aged 18–34) participated
in a single 2.5-h session in exchange for monetary compen-
sation (/25). All of the participants gave both written and oral
informed consent and reported normal or corrected-to-normal
visual acuity and color vision. The data from two participants
were discarded due to excessive eye movement artifacts; the
data reported here reflect the remaining 24 participants.

Design and procedure The design and procedure were similar
to those of Experiment 1. A representative trial is depicted in
Fig. 7. Prior to beginning the experiment, each participant was
randomly assigned to one of two cue color conditions: red or
green (luminance matched at 23 cd/m2). On each trial, one,
two, or four cue circles appeared along the perimeter of an
imaginary circle (radius 5º) in one hemifield of the display. An
equivalent number of distractor items were presented in cor-
responding locations in the opposite visual field. No items
were presented in uncued locations. The cue array was pre-
sented for a randomly chosen interval between 500 and
700 ms, and was followed by the presentation of a target array
for 100 ms. The target was followed by a 400-ms substitution
mask and the presentation of a randomly oriented probe at the
target’s location. As in Experiment 1, participants adjusted the
orientation of this probe until it matched their percept of the
target’s orientation.

Change detection task To examine whether the correlations
between estimates of selection and WM capacity would gen-
eralize to this new experiment, each participant completed a
short (approximately 15-min) change detection task similar to
one described by Luck and Vogel (1997). Each trial began
with the presentation of a “sample” display containing four or
eight colored squares (each subtending 1.1º) for 100 ms. The
color of each square was randomly chosen with replacement
from a set including red, green, yellow, blue, black, and white,
with the constraint that no color appeared more than twice.
The stimuli were presented within a 12º×9º window centered
at fixation, with the following constraints: (1) Stimuli were
evenly spaced across the four quadrants of the display (i.e.,
during set size 4 trials, a single square appeared in each
quadrant, and during set size 8 trials, two squares appeared

in each quadrant), and (2) stimuli were separated by a mini-
mum of 2.1º.

Following a 1,000-ms blank interval, a single “probe” square
replaced one of the sample items. On 50 % of the trials, the
probe had the same color as the item that it replaced; on the
remaining 50 % of trials, the probe was assigned a different
color (randomly chosen from the aforementioned set of six
colors). Participants indicated via keyboard press whether the
probe was the same color as the corresponding sample item
(z=“yes,” ?=“no”). Participants were encouraged to prioritize
accuracy, and no response deadline was imposed. Each par-
ticipant completed a total of three blocks of 48 trials. Short rest
periods were provided between blocks.

To estimate WM capacity, we relied on an analytical solu-
tion developed by Pashler (1988) and refined by Cowan
(2001). Here, capacity (K ) is defined as

K ¼ N* HRN− 1−FANð Þ½ �; ð3Þ

where N is the number of items in the sample display, HR is
the participant’s hit rate (or accuracy on “different” trials) for
displays containing N items, and FA is the participant’s false
alarm rate.

Electrophysiological recording and analysis ERPs were re-
corded using standard recording and analysis procedures that
have been described in detail elsewhere (McCullough,
Machizawa, & Vogel, 2007). Participants were asked to hold
fixation and to refrain from blinking. Trials contaminated by
blocking, blinks, or large (>1º) eye movements were excluded
from all analyses. We recorded from 22 electrodes spanning
the scalp, including the International 10–20 Standard sites F3,
F4, C3, C4, P3, P4, O1, O2, PO3, PO4, T5, and T6, as well as
nonstandard sites OL and OR (midway between O1/2 and T5/
6). The horizontal electrooculogram (EOG) was recorded
from electrodes placed 1 cm to the left and right of the external
canthi, and the vertical EOG was recorded from an electrode
beneath the right eye referenced to the left mastoid. EEG and
EOG were amplified by an SA Instrumentation amplifier with
a bandpass of 0.01–80 Hz (half-power cutoff, Butterworth
filters) and were digitized at 250 Hz by a PC-compatible
microcomputer.

Contralateral waveforms were computed by averaging the
activity recorded over the right hemisphere when participants
were required to select items in the left visual hemifield, and
vice versa for trials on which the to-be-selected items ap-
peared in the right visual hemifield. This was done separately
for each set size (1, 2, or 4). The N2pc was defined as the
difference in mean amplitudes between contralateral and ipsi-
lateral waveforms averaged across electrode sites O1/2, OL/R,
and PO3/4 during a period extending from 175 to 250 ms
following the onset of the cue array.
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Results and discussion

As in Experiments 1 and 2, performance on the behavioral
task was described better by a discrete-resource model
(Fig. 8A; mean adjusted r2=.94±.02 for set size 4; set sizes
1 and 2 were not modeled, due to near-ceiling performance)
than by a flexible-resource model (adjusted r2=.50±.03).
Moreover, estimates of selection capacity were strongly pre-
dictive of estimates of WM capacity obtained from the color
change detection task (Fig. 8B; r =.57, p <.01).

As is shown in Fig. 9 (top), the presentation of the cue array
evoked a robust N2pc whose amplitude increased monotoni-
cally with set size. To examine the putative relationships

between behavioral performance and N2pc amplitudes, par-
ticipants were first divided into high- and low-capacity groups
on the basis of a median split (in which the median capacity
was 2.48 items) of selection capacity at set size 4. The mean
N2pc amplitudes are plotted as a function of group (high vs.
low capacity; M =3.33 and 1.85, respectively) and set size in
Fig. 9, middle panel. A 2 (capacity group)×3 (set size) anal-
ysis of variance (ANOVA) with Capacity Group as the sole
between-subjects factor on mean N2pc amplitudes revealed a
main effect of set size, F(2, 20)=11.86, p <.001, no main
effect of group, F (1, 10)=3.12, p =.10, and a marginal inter-
action between these factors, F (2, 20)=3.27, p =.059.
Planned comparisons revealed that the low- and high-
capacity groups did not differ when only one or two items
had to be selected, t (11)=1.87, p = .08, and t (11)=0.40,
p = .70, for set sizes 1 and 2, respectively. However, the mean
N2pc amplitudes were larger in the high- (M =−0.59) than in
the low- (M =−0.23) capacity groups on set size 4 trials,
t (11)=3.09, p =.01. Moreover, interparticipant variability in
selection capacity was strongly correlated with N2pc ampli-
tudes on set size 4 trials (Fig. 9, bottom), such that individuals
with a larger selection capacity tended to have higher N2pc
amplitudes (r =.51, p = .01). Thus, a cue-evoked electrophys-
iological response occurring approximately 300–500 ms be-
fore the onset of the target array—well before there was any
need to encode or store any information—was a reliable
predictor of participants’ behavioral performance. This
strongly suggests that performance in this task was limited
by each participant’s ability to select and individuate informa-
tion from these locations rather than by their ability to encode
or store this information.

Experiment 4

One could argue that the N2pc set size effects documented in
Experiment 3 reflect factors unrelated to the selection of cued
locations (e.g., perhaps they reflect a general preparatory
response; though see Anderson et al., 2011, 2013; Drew &
Vogel, 2008; and Ester et al., 2012, for additional evidence
suggesting that N2pc amplitudes are sensitive to attentional

Fig. 7 Selection task used in Experiment 3. Prior to beginning the task,
participants were instructed to attend red (shown here in white) or green
(shown in black) circles. Each trial began with the presentation of one,
two, or four cue circles in one hemifield of the display; an equivalent

number of distractors were presented in the opposite field. The target
array was then rendered for 100 ms; as in Experiment 1, participants were
instructed to discriminate the orientation of a single radial target that was
presented in one of the cued locations

Fig. 8 Behavioral performance in Experiment 3. Panel A depicts the
mean distribution of response errors (±1 SEM) observed during set size 4
trials of a lateralized variant of a selection task. These data were well-
described by a discrete-resource model (solid line) and poorly described
by a flexible-resourcemodel (dashed line). Panel B depicts the correlation
between estimates of selection (using data from set size 4 trials) and
working memory (WM) capacity. Here, WM capacity was estimated
using a color change detection procedure similar to the one described
by Luck and Vogel (1997)
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demands). In Experiment 4, we tested this possibility by
eliminating any need for the observers to select items in the
cue array. The task used in Experiment 4 was identical to that
used in Experiment 3, with the exception that all nontarget
items were removed from the target array. This obviated any
need for the observer to select items in the cue array: The lone
target would simply “pop out.” Our reasoning was that if the
cue-locked N2pc set size effect observed in Experiment 3
reflected a preparatory response, then this effect should also
manifest in the present experiment when selection demands
were minimized. Alternately, if this effect reflected the num-
ber of objects or locations in the cue array that an observer had
selected, then it should be abolished.

Method

Participants A group of 14 adults (ages 18–33) completed a
single 2.5-h testing session in exchange for monetary com-
pensation. None of the observers who participated in this
experiment had participated in Experiment 3. All of the ob-
servers gave both written and oral consent, and all reported
normal or corrected-to-normal visual acuity and color vision.

Design and procedure The design of Experiment 4 was iden-
tical to that of Experiment 3, with the exception that
distractors were removed from the target array (i.e., the target
array contained only the target). The acquisition and analysis
of EEG data were identical to the procedures described for
Experiment 3.

Results and discussion

Observers’ behavioral performance was near ceiling, with
very few high-magnitude errors. Because of this, observers’
response profiles were well-approximated by both the flexible
(adjusted r2=.95) and discrete (adjusted r2=.98) models, and
the mean selection capacity (at set size 4) was approximately
3.95 items. Thus, deleting nontarget items from the target
array greatly improved observers’ task performance relative
to Experiment 3. Grand-averaged ERP waveforms time-
locked to the onset of the cue array as a function of set size
are depicted in Fig. 10, top panel. To compare the results of
this experiment with those of Experiment 3, N2pc amplitudes
(defined as the mean response during a period 175–250 ms
following the onset of the cue array, or roughly 125 ms
following the onset of the initial sensory response) were
initially submitted to a 2 (Exp. 3 vs. Exp. 4)×3 (set size)
mixed-model ANOVAwith Experiment as the sole between-
group factor. This analysis revealed a marginal main effect of
experiment, F(1, 36)=3.67, p =.06, a main effect of set size,
F(2, 72)=6.28, p =.003, and an interaction between these two

Fig. 9 Cue-evoked N2pc responses observed in Experiment 3. Top
panel: Grand-averaged electroencephalographic waveforms time-
locked to the onset of the cue array. An N2pc (a transient negative
response) emerges approximately 175 ms following the onset of the
array. Note that the N2pc amplitudes increase monotonically with
set size. Middle panel: To examine whether individual differences in
N2pc amplitudes predicted participants’ performance on this task,
we first divided participants into low- and high-capacity groups on
the basis of a median split of capacity estimates. We then plotted the
mean N2pc amplitudes (using a window from 175 to 250 ms fol-
lowing the onset of the target array) as a function of capacity group.
No group differences in amplitudes were observed at set sizes 1 and
2, presumably because putative capacity limits in selection were not
exceeded. However, a reliable difference in N2pc amplitudes across
groups was observed at set size 4. Error bars represent ±1 SEM .
Bottom panel: Estimates of selection capacity (abscissa) were
strongly correlated with the N2pc amplitudes observed during set
size 4 trials (ordinate). Thus, the amplitude of an electrophysiolog-
ical response that occurred 300–500 ms prior to the onset of the
target array—well before participants were required to encode or
store any information from the display—was strongly predictive of
the participants’ performance on this task
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factors, F(2, 72)=5.23, p =.007. Mean N2pc amplitudes are
plotted as a function of set size and Experiment (3 vs. 4) in
Fig. 10, bottom. Note that in contrast to the monotonic set size
effects observed in Experiment 3 (black bars), no N2pc set
size effect was observed in the present experiment. Because
the only difference between the tasks used in Experiments 3
and 4 concerned whether observers would need to select cued
locations in advance, this strongly suggests that the N2pc set
size effect observed in Experiment 3 reflected the selection of
items in the cue array.

General discussion

Our findings support the view that observers can select only a
handful of items at an instant. Specifically, we found that
performance in an attention-demanding selection task that
required participants to select and monitor multiple locations
was well-described by a discrete-resource model that assumes
a fixed limit in the number of locations that can be selected.
Conversely, a flexible-resource model that allowed the entire
target array to be selected provided a relatively poor

description of these data. Of course, one explanation for the
discrete resource limit observed in our selection task is that the
number of selected locations actually increased with set size
(consistent with a flexible-resource model), but a subsequent
limit in WM storage (in which capacity is thought to be
limited by a discrete resource—see, e.g., Zhang & Luck,
2008; though see Van den Berg, Shin, Chou, George, & Ma,
2012, for an alternative view) created the appearance of a
discrete resource limit. However, Experiment 3 revealed a
robust correlation between individual differences in selection
capacity and the amplitude of a cue-evoked N2pc appearing
300–500 ms prior to the onset of the to-be-encoded target.
This strongly suggests that performance in our selection task
was limited by participants’ ability to select and individuate
multiple locations rather than by their ability to encode and
store information from these locations.

Our interpretation of these data rely upon the assumption
that the uniform component of the mixture model reflects
trials in which the participant fails to select the target location
and is forced to guess randomly. However, a previous study
(Bays, Catalao, & Husain, 2009) suggested that a large pro-
portion of these random responses can be attributed to binding
errors, in which the participant erroneously reports a feature
value from a nontarget location. To explore this possibility, we
generated a distribution of response errors relative to each
distractor orientation in the cued locations during the set size
4 trials of Experiment 3. We found no evidence of a central
tendency in these distributions (Fig. 11), suggesting that bind-
ing errors were not a major determinant of task performance.

Our findings are reminiscent of multiple studies also sug-
gesting that WM capacity is determined by a discrete resource
(Anderson et al., 2011; Anderson & Awh, 2012; Awh, Barton,
& Vogel, 2007; Barton, Ester, & Awh, 2009; Luck & Vogel,
1997; Rouder et al., 2008; Vogel & Machizawa, 2004; Zhang
& Luck, 2008). In addition, a substantial amount of evidence
suggests that both visual selection and WM storage are medi-
ated by similar neural mechanisms. For example, similar
cortical regions are recruited during both sustained attention
and WM maintenance (Awh & Jonides, 2001). Moreover,

Fig. 10 Results of Experiment 4. Top panel: Grand-averaged waveforms
time-locked to the onset of the cue array, in a variant of the task used in
Experiment 2 in whichwe omitted distractors from the target array. Under
these conditions, the N2pc observed in Experiment 3 was virtually
eliminated. Bottom panel: Comparison of mean N2pc amplitudes ob-
served across set sizes in Experiments 3 (black bars) and 4 (white bars).
Error bars represent ±1 SEM

Fig. 11 Distribution of response errors relative to the distractor orienta-
tions observed in Experiment 3. The data are from set size 4 trials and
have been pooled across the three distractors presented in the target
hemifield. Error bars represent ±1 SEM
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activity in posterior parietal regions such as intraparietal sul-
cus has been shown to scale with the number of items that are
being attended (Cusack, Mitchell, & Duncan, 2010; Mitchell
& Cusack, 2008) or held in WM (Xu & Chun, 2005).
Together, these findings raise the possibility that visual selec-
tion and WM storage are dependent on a common, discrete
resource (Anderson et al., 2013; Ester et al., 2012). Here, we
provide evidence supporting this view. Specifically, individual
differences in selection capacity were strongly correlated with
corresponding differences in WM capacity. Critically, this
relationship cannot be explained by WM contributions to
our selection task: The amplitude of a cue-evoked N2pc
component—appearing approximately 300–500 ms before
any to-be-encoded stimulus—was a robust predictor of
behavioral performance.

The flexible-resource model scrutinized here assumes that
encoding and memory precision are constant (i.e., resources
are divided equitably between each of the cued stimuli) across
stimuli and trials. However, some recent work (Mazyar, van
den Berg, &Ma, 2012; Van den Berg et al., 2012) has reported
that precision varies considerably across stimuli and trials.
Thus, one could characterize our flexible-resource model as
a “straw man” and argue that a suitably complex model
(e.g., one in which precision varies across stimuli and trials,
or one that incorporates recent history—i.e., which location
contained the target on the previous trial) could easily match
or better a discrete-resource model. However, note that we
reported strong links between capacity estimates obtained via
a discrete-resource model and a neural measure of attentional
processing (the N2pc ERP component). Prior work has dem-
onstrated that this component reaches an asymptotic limit
once putative item limits in multiple-object tracking
(e.g., Drew & Vogel, 2008), subitizing (Ester et al., 2012),
visual search (Anderson et al., 2013), and WM storage (e.g.,
Anderson et al., 2011) have been reached. It is unclear how a
flexible-resource model—however complex—could account
for any these findings, since a fundamental prediction of this
class of models is that all items within a display are selected
(or remembered), albeit with dwindling levels of precision.
Thus, the extant neural data provide strong converging evi-
dence for discrete-resource models of perception and visual
short term memory.

Previous theoretical (Lisman & Idiart, 1995; Raffone &
Wolters, 2001) and experimental (Liebe, Hoerzer, Logothetis,
& Rainer, 2012; Sauseng et al., 2009; Siegel, Warden, &
Miller, 2009) work has suggested that the storage of multiple
items in WM is mediated by a phase-coding scheme. Here,
each item held in WM is represented though a unique pattern
of high-frequency, synchronous firing across large popula-
tions of neurons. When multiple items must be held in mem-
ory, the high-frequency activity related to each remembered
item may be multiplexed within distinct phases of slower
oscillatory activity. One attractive aspect of this phase-

coding scheme is that it provides a relatively straightforward
explanation of the discrete capacity limits that have been
reported in numerous studies of WM. For example, if infor-
mation from each selected location must be segregated from
the others in a different range of phase orientations, there
should be a maximum number of locations that could be
distinctly represented at once. Our suspicion is that a similar
phase-dependent coding scheme mediates the selection of
multiple locations, though further research will be needed to
evaluate this possibility. One attractive aspect of this account
is that it implies that the discrete resource limits observed in
visual selection and WM storage are due to basic biophysical
limitations in how information can be represented in the brain.

In summary, although multiple past studies have docu-
mented clear capacity limits in the online selection of visual
information, conclusive evidence regarding the nature of the
limiting resource has been elusive. The findings reported here
are consistent with a fixed item limit in visual attention.
Moreover, the item limits that were evident in this visual
selection task were strongly correlated with the item limits
that were observed in a parallel test of storage capacity in
visual WM, suggesting that visual selective attention and
working memory may be constrained by a common discrete
resource.
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